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Fitting of experimental data to the 
Granato-L0cke model 

F. POVOLO*  
Gesellschaft for Kernforschung, Institut for Material-und FestkOrperforschung II, 
75 Karlsruhe, West Germany 

A new, direct and more accurate method than the usual Granato-LOcke plot is given, for 
the fitting of the experimental data to the theory. Some results reported in the literature 
are analysed and it is shown that all the aspects of the theory must be taken into account 
in order to obtain meaningful results for the several dislocation parameters. 

1. Introduction 
The Granato-Lticke model [1] for the amplitude- 
dependent damping produced by the unpinning of 
dislocations from impurity atoms has been widely 
used to obtain information on dislocation-solute 
atoms interactions and on the properties of dis- 
locations. Although this is a zero-temperature 
model, it was used, with apparent success, to 
obtain values of dislocation parameters from damp- 
ing data measured at high temperatures. 

Bauer and co-workers [2, 3] among others have 
used the so-called Granato-Liacke plot to obtain 
values for the binding free energies between solute 
atoms and dislocations in several alloys. More 
recently, the same plot has been used by Atrens 
[4] to obtain the binding energy between oxygen 
atoms and dislocations in Zr -O alloys, and by 
Burdett and Wendler [5] for solute atoms and 
dislocations in zinc. Povolo [6] has recently 
commented on the validity of the dislocation 
parameters obtained from the Granato-Lticke 
plots and on those calculated from the temperature 
dependence of the slopes of those plots. These 
comments have led to a controversial discussion 
[7, 8] and it is not clear when a set of experimen- 
tal damping data can really be described by the 
Granato-Li~cke model. 

A new method of fitting the experimental data 
to the theory will be given that does not rely on 
the linearity of the Granato-Liicke plots and the 
results are compared directly and unambiguously 
with the theoretical expressions. 

2. Results and discussion 
The amplitude-dependent damping, AH, due to 
the unpinning of dislocations including strain 
distributions in the specimens, is given by [9] 

An = Cl(C2/eo)F(C2/eo)exp(C2/eo), (1) 

where eo is the strain amplitude, C1 and C2 are 
constants for a particular dislocation-point defect 
configuration and F(C2/eo) is  a function that 
takes into account the strain distribution in the 
specimen. 

A plot of equation 1 as logAHeo versus 1/eo 
(Granato-Li~cke plot) at small strains gives a 
straight line of slope C2. This is the plot generally 
used in the literature and the binding energy 
between dislocations and impurity atoms is 
obtained from the temperature dependence of 
6'2 [6]. In general, no attention has been given 
to the parameter C1. 

The experimental data can be fitted to the 
theory in a more direct way by plotting the 
logarithm of the normalized damping AH/C1, 
versus the logarithm of the normalized strain, 
eo/C2, given by Equation 1. Such a plot is shown 
in Fig. 1 for longitudinal (AI/C1) and torsional 
(AJC1) excitations. The approximate limit in 
the strain amplitude (eo/C2 <~ 0.25) imposed by 
the model [1] is shown in the same figure. 

The experimental damping versus strain data, 
(AH, eo) can be compared with Fig. 1 and Equation 
1 by plotting them as log A a versus log e0 with the 
same scales as for Fig. 1. By translation, these 
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Figure 1 Logarithmic plot of  Equation 1 for torsional and 
longitudinal excitations. 

curves can be superimposed on part of the theor- 
etical curve, and C2 can be obtained from the 
coincidence of some value of eo from the exper- 
imental curve with a eo/C2 value of the theoretical 
curve, and C1 from that of an experimental damp- 
ing value with the corresponding theoretical 
Aa/C 1 value. 

To illustrate the procedure, some published 
data which have previously been analysed using 
the Granato-Lticke plot [6] will be fitted to 
Equation 1 in the way suggested above. 

Atrens' [4] data for Zr -O alloys obtained in 
torsion and, Oren et aL's [3] results for Cu-Si 
alloys obtained in longitudinal excitations, are 
shown in Figs. 2 and 3, respectively. The points 
indicate the experimental data and the curves the 
part of the corresponding theoretical curve of 
Fig. 1 where the fitting was made. It is seen that 
there is only one way to fit the data to Equation 
l, and no straight lines have to be drawn through 

the experimental points, in some cases rather 
subjectively , as for the case of the Granato-Liacke 
plot. 

The eo/Ca and AH/C1 theoretical values chosen 
to calculate C1 and 6'2 are marked on each curve 
and the values obtained for these parameters are 
shown in the same figures as a function of the 
reciprocal of the absolute temperature. 

The 6"2 values are quite similar to those reported 
by Atrens and Richtie [7] and Oren etal. [3]. As 
shown in both figures, C2 does not increase 
linearly with 1/T as assumed by Atrens [4] and 
Oren et al. [3]. Furthermore, Atrens [4] and 
Atrens and Richtie [7] only considered the high 
temperature data of Fig. 2, drawing the average 
straight line shown in the figure, and obtaining 
a binding energy, UB, of the order of 0.2 eV. 

Oren et al. [3] used the average straight line at 
high temperatures shown in Fig. 3 to calculate the 
binding energy, obtaining a value of ~ 0.5 eV (or 
~0.25 eV by using a factor of 2 in the expression 
for the concentration of solute atoms at the dis- 
location core [3]). It is seen that both values are 
meaningless since if one chooses the low tempera- 
ture data of Figs. 2 and 3, where the Granato- 
Liicke theory should be more applicable, 6"2 
would be practically constant with temperature in 
Fig. 2, and a binding energy of the order of 0.09 
eV would be obtained from Fig. 3. 

These incongruities arise from the fact that 
only partial aspects of the theory were considered 
by these authors and a more detailed analysis of 
the experimental data shows that they are not 
described by the Granato-Liicke model. In fact, 
6"1 and 6"2 are proportional to 1/L c [6], where Lc 
is the average distance between minor pinning 
points, so that both parameters should show the 
same temperature dependence. As shown in Figs. 2 
and 3 this is not the case, and in the region con- 
sidered by Atrens [4], Ca even decreases with 
1/T. Furthermore, C1 = ~2AoAL~/zrLc [1], and 
assuming AL~ = 3 (isotropic network), ~2 = 1/25 
and C = 1/2Gb a results in 

LN/Le "" 154C1. (2) 

Equation 2 gives the number of pinning points per 
major loop. Values between 0.047 and 0.23 are 
obtained for the number of pinning points by ap- 
plying Equation 2 to the data of Fig. 2. Even if 
this equation gives only a rough estimate, it is 
seen that such values are meaningless. The situation 
is better for the data of Fig. 3 from which a value 
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Figure 2 Fitting of the data of Figs. 1 and 2 of [4] to Equation 1. 
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of 9 is obtained, but the temperature dependence 
is not correct. 

In conclusion, it is seen that even if the indi- 
vidual damping curves may be described by 
Equation 1 (which any function can be, at least in 
parts) and C2 gives an Arrhenius plot (this is not the 
case for the data analysed) this is not enough to 
assert that the data are described by the Granato- 
Liicke model and the overall analysis of C1 and C2 
must be considered. In addition, for the data just 
shown, the fitting was done at too high values of 
eo/C2, i.e. beyond the limits imposed by the 
model. 
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From the arguments given above, it follows that 
the values obtained for the binding energies from 
the data of Figs. 2 and 3, are meaningless in the 
context of the Granato-Lticke model and it is 
unreasonable to estimate errors, as suggested by 
Fiore and Bauer [8].  It must be pointed out that 
similar inconsistencies were found [ 10] for the data 
reported by Burdett and Wendler [5] which were 
interpreted by the authors using the Granato- 
Liacke plot. 

Finally, Fernandez and Povolo [11] have inter- 
preted their amplitude-dependent damping and 
modulus defect data in zirconium and zircaloy-4 
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Figure 3 Fitting of the data of Fig. 1 of 
[3] to Equation 1. 
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in terms of an interaction between extended dis- 
location and oxygen atoms by using a different 
approach. A theory given by Blair et  al. [12], 
which takes thermal activation into account, was 
used and a value of 1.2 eV was obtained for the 
binding energy, and not 0.18eV as given by 
Atrens [4] and Atrens and Richtie [7]. 

3. Conclusions 
A model has been proposed for fitting experimen- 
tal data to the Granato-I/icke model in an 
unambiguous way. Unfortunately, the typical data 
just analysed are not described quantitatively by 
the model, especially in the generally assumed 
temperature dependence of C1 and C2. This was 
found to be the case with other data, even with 

those originally analysed by Granato and Dlcke 
[13], so that it may be said that a numerical 
confirmation of the model, at least in the predicted 
temperature dependence of the parameters C1 and 
C2, has not yet been established. 
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